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Abstract

Purpose – The paper seeks to present an original method for the numerical treatment of thermal
shocks in non-linear heat transfer finite element analysis.

Design/methodology/approach – The 3D finite element thermal analysis using linear standard
tetrahedral elements may be affected by spurious local extrema in the regions affected by thermal
shocks, in such a severe ways to directly discourage the use of these elements. This is especially true in
the case of solidification problems, in which melted alloys at very high temperature contact low
diffusive mould materials. The present work proposes a slight modification to the discrete heat
equation in order to obtain a system matrix in M-matrix form, which ensures an oscillation-free
solution.

Findings – The proposed “diffusion-split” method consists basically of using a modified
conductivity matrix. It allows for solutions based on linear tetrahedral elements. The performance
of the method is evaluated by means of a test case with analytical solution, as well as an industrial
application, for which a well-behaved numerical solution is available.

Originality/value – The proposed method should be helpful for computational engineers and
software developers in the field of heat transfer analysis. It can be implemented in most existing finite
element codes with minimal effort.
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1. Introduction
The solution of diffusion problems using the standard finite-element method (FEM) is
often affected by severe numerical instabilities. These instabilities take for instance the
form of unphysical local maxima and minima in solutions expected to be monotonic.
Such a spurious behaviour evidences a violation of the maximum principle. In fact,
when we discretize the diffusion operator using standard (Galerkin) finite elements,
the maximum principle is not always satisfied, as discussed by several authors (Putti
and Cordes, 1998; Cordes and Putti, 2001; Kosik et al., 2000). The principle satisfied,
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a maximum/minimum can only occur either initially or at the boundary, in the latter
case a flow from/to the outside must exist (Kosik et al., 2000).

The constraints imposed by this principle on numerical modelling are critical in the
regions where the solution exhibits steep gradients. In thermal analysis, with the
temperature field as solution, we call thermal shocks these steep variations. They
usually appear in the boundary vicinity in a domain initially hot (or cold) that is
suddenly cooled (resp. heated) through such boundary.

Zienkiewicz and Taylor (2000) make the mathematical model responsible of the
numerical instabilities associated to thermal shocks. In fact, thermal shocks arise due
to the jump between initial and boundary conditions, considered to be physically
unrealistic by those authors. They propose then to apply gradually the initial
conditions, avoiding in such a way the problems caused by thermal shocks on
numerical modelling. Unfortunately, in many important processes such as hot forming
and casting, some boundary regions suffer very high cooling or heating rates, in a
period of time that is very small with respect to the discretization time step, so that the
initial jump in boundary conditions really exists and must be modelled. Numerous
concrete examples can be given, for instance the contact between a hot metal workpiece
and forming tools at a much lower temperature, or between the flow of molten metal
and the components of a casting mould.

The proper modelling of thermal shocks at a given time instant is achieved provided
the layer currently affected by the thermal shock be at least one-element wide (Hogge
and Gerrekens, 1982; Gerrekens, 1988; Wagoner and Chenot, 2001). This is the so-called
penetration depth condition. For a mesh of uniform element size Dx, the time increment
Dtts required to satisfy this condition is given by:

Dtts ¼ a
rcp

k
Dx 2 ð1Þ

where a is a constant of order 1 (Hogge and Gerrekens, 1982; Gerrekens, 1988;
Wagoner and Chenot, 2001).

In a purely thermal analysis, thermal shocks have a relatively short-term effect,
since the solution is no longer affected once the thermal shock layer is developed
enough. However, in a coupled analysis, e.g. a thermo-mechanical analysis, the
instabilities in the early stages may invalidate the whole solution, as it is the case for
inelastic (history-dependent) materials with thermo-dependent mechanical properties.

We can also satisfy the penetration depth condition by refining the mesh in the
concerned regions, as done by Sheu et al. (1999) for convection-diffusion and
convection-diffusion-reaction problems (Sheu and Chen, 2002), with satisfactory results
in terms of accuracy. The adaptive refinement technique proposed by Sheu et al. (1999),
based on the bisection of rectangular finite elements, allows to restrict the refined grid
only to the regions of large gradients, leaving the grid outside unaltered.
Unfortunately, the implementation of such technique for general unstructured
meshes is not as simple. Further, only 2D problems were considered in those works.

In fact, the option of mesh refinement is usually unaffordable in real 3D
applications, for which the finite element grids are now frequently non-structured and
composed of tetrahedral elements. Let consider for instance a metal casting problem,
where an initially extremely rapid cooling process takes place at the interface between
the melt and the chilled mould, requiring a highly refined mesh on both domains.
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Regarding this constraint, and assuming finite element meshes not especially
refined at their boundaries, let us outline then the different approaches developed to
deal with thermal shocks using tetrahedral elements.

The first one arises naturally from the penetration depth condition: if the mesh must
keep unchanged, a high enough time step, that is Dtts as determined by equation (1), is
needed in the early stage of the simulation. Then, by using an implicit time-stepping
scheme, the heat equation can be solved taking Dtts as time step without stability
concerns. Unfortunately, Dtts is frequently too large for an accurate integration of the
heat equation and all the other conservation equations that may be coupled with it, e.g.
the momentum and chemical species balances. Jaouen (1998) has proposed to adopt Dtts
as time step, and then to linearly interpolate the computed thermal solution to an
adequate time step Dt , Dtts. This strategy, called asynchronous thermal analysis,
gives satisfactory results for linear or slightly non-linear problems, which is not the
case in solidification processes.

The second approach is based on the M-matrix theory (Ortega and Rheinboldt,
1970): the satisfaction of the maximum principle requires the system matrix obtained
after discretization be an M-matrix (a real, non-singular n £ n-matrixA is an M-matrix
if A21 $ 0 and all its out-diagonal components are non-positive). Putti and Cordes
(1998) and Cordes and putti (2001) proposed an orthogonal subdomain collocation
(OSC) technique that produces a diffusion matrix in M-matrix-form when applied to
tetrahedral finite elements in a 3D Delaunay triangulation satisfying suitable
conditions on the elements geometry adjacent to the boundary affected by thermal
shocks. If the capacitance matrix is lumped, it becomes an M-matrix. In such a way, the
system matrix for a transient diffusion problem, being the sum of two symmetric
M-matrices, is also an M-matrix. It is not longer the case when the system matrix
contains an advection (non-symmetric) term, and therefore this approach cannot be
generalized to advection-diffusion problems. In addition, the geometrical constraints
on the mesh prevent from using general meshing codes, that generally use tetrahedral
elements. This leads several authors (Letniowski, 1992; Kosik et al., 2000) to directly
discourage the use of linear tetrahedral finite elements; Kosik et al. (2000) promote to
use the finite volume method (FVM) instead. However, we cannot ignore the wide
diffusion of FEM in the existing codes, as well as its versatility compared to FVM.

Not only FVM but also some FEM models are free of oscillations under thermal
shocks. This is the case of discontinuous Galerkin (DG) models. Pichelin and Coupez
(1999) and Batkam (2002) have developed explicit and implicit DG models,
respectively, to solve thermal problems on general 3D triangulations. They used P0
elements, i.e. tetrahedra with constant temperature inside. Therefore, the use of these
techniques implies no more nodal but elemental unknowns. Let us remark that in a
typical 3D triangulation, the number of elements is about five times greater than the
number of vertex nodes. In other words, DG-P0 elements are not only less convenient
than P1 elements in terms of the order of the discretization error, but also regarding the
computational cost. In addition, the coupling with the resolution of complementary
conservation equations, such as momentum or chemical species, for which a nodal
solution may be obtained, yields to difficulties regarding the consistency of the
different fields of variables.

The present work aims to retain the advantages of using P1 finite elements, making
possible at the same time to model thermal shocks when small enough time increments
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are used. The diffusion-split method presented here has common items with that of
Jaouen (1998) regarding the idea of satisfying the penetration depth condition, as well
as with those inspired by the M-matrix theory (Putti and Cordes, 1998; Cordes and
Putti, 2001) that focus on the form of the system matrix. The resulting formulation,
representing just a slight modification to the standard Galerkin one, can be easily
implemented into existing FEM codes.

2. The heat equation
The well-known local form of the heat equation is:

rcp
dT

dt
2 7ðk7TÞ ¼ Q in V ð2Þ

whereV is the analyzed domain, t the time variable, T the temperature, rcp the specific
heat, k the thermal conductivity, and Q an internal heat source. First, we consider here
the energy equation without possible phase change. This aspect will be discussed in
Section 4.2. Equation (2) is subject to the initial condition:

T ¼ T 0 at t ¼ 0 ð3Þ

and the following boundary conditions:

T ¼ Tw on GT ð4Þ

2ðk7TÞn ¼ qw on Gq ð5Þ

2ðk7TÞn ¼ hðT 2 TextÞ on Gc ð6Þ

prescribing the temperature Tw on GT, the heat flux qw through Gq, and the heat
exchange through Gc due to convection to the environment at temperature Text with h
as the convection coefficient; GT, Gq, and Gc are non-overlapping portions of the
boundary G of V being n the unit normal vector pointing outwards to G.

3. Standard finite element formulation
The Galerkin FEM applied to the initial and boundary value problem defined by
equations (2)-(6) yields the system of first-order differential equations (see the classical
FEM literature, e.g. Zienkiewicz and Taylor, 2000, for details):

C
dT

dt
þKT2 F ¼ 0 ð7Þ

where T is the vector of nodal unknown temperatures, C is the capacitance matrix,
K the conductivity matrix, and F is the internal source and external flux vector,
defined as:

Cij ¼

Z
V

rcpN iNj dV ð8Þ
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Kij ¼

Z
V

k7Ni ·7Nj dV þ

Z
Gc

hNiNj dS ð9Þ

Fi ¼

Z
V

QNi dV þ

Z
Gc

qwNi dS þ

Z
Gc

hTextNi dS ð10Þ

being Ni the interpolation function associated with node i. The fully-implicit
Euler-backward scheme is used to integrate equation (7) in time. Then, once the
temperature at time t, say T t, is known, the temperature T at time t þ Dt can be
obtained by solving the discrete equation:

C
T2 Tt

Dt
þKT2 F ¼ 0 ð11Þ

4. The diffusion-split method
As mentioned earlier, it is known that the spurious solutions observed in case of
thermal shocks are associated with the form of the system matrix (Putti and Cordes,
1998; Cordes and Putti, 2001; Kosik et al., 2000). Then, let us rewrite the governing
discrete equation (11) by splitting the diffusion term as follows:

C
T2 Tt

Dt
þK*T2 F ¼ S ð12Þ

where:

S ¼ ðK* 2KÞT ð13Þ

with:

K*ij ¼

Z
V

k*7Ni ·7Nj dV þ

Z
Gc

hNiNj dS ð14Þ

Now, assuming S to be an explicit source term, an augmented conductivity k* can be
defined to satisfy the penetration depth condition for Dt as the first time step:

k* ¼

k if Dtts # Dt

k
Dtts

Dt
if Dtts . Dt

8><
>: ð15Þ

The value of k * decreases with time from the value given by equation (15) at t ¼ 0 to
the real conductivity k when t þ Dt $ Dtts: Therefore, in the latter case, equations (11)
and (12) are identical. Regarding the source term S, an explicit approximation is built
by taking a known value of T in equation (13), T t being the best choice since any
approximation to T obtained using an explicit time-stepping scheme may be affected
by instabilities. Thus:

S < ðK* 2KÞTt ð16Þ
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It is interesting to note that during the early stages of the simulation, there is no
sensible variation of the temperature outside those regions under thermal shocks, and
hence the approximation implied by equation (16) is local and temporary.

4.1 The penetration depth condition on unstructured meshes
For non-uniform unstructured meshes, the computation of Dtts using equation (1)
complicates due to the uncertain definition of the mesh size Dx. Jaouen (1998) explores
all the non-adiabatic boundaries of the analysed domain, determining the minimum,
the maximum, and the average value of Dx, the choice of the adequate value left to the
user’s expertise. Being the square value of Dx involved in equation (1), the influence of
this choice on the proper modeling of thermal shocks is crucial. According to our
practical experience, Dtts is underestimated when computed with the minimum Dx, and
hence the penetration depth condition is clearly not satisfied in some regions. On the
other hand, the use of the maximum Dx, leading to an overestimation of Dtts, has a
detrimental effect on the accuracy of the diffusion-split method, producing an
excessively large k*. Using the average mesh size, the result is uncertain.

If it were possible to identify a priori those regions under thermal shocks, and the
mesh within each region were quite uniform, then we could define a local Dtts (and
hence a local k*). Anyway, for the sake of simplicity, we prefer to determine a global
Dtts. It is worth noting that in the case of monotonic cooling, Dtts can be easily
determined by solving equation (12) for increasing Dtts until the computed temperature
not exceed the previous one at each node of the mesh. This should not take more than a
few iterations to obtain an accurate enough value of Dtts. Normally, this is made only
once at the beginning of the simulation, so the additional computational cost is
negligible in practice.

4.2 The diffusion-split method for solidification problems
In the case of liquid-solid phase change, we introduce the enthalpy function:

H ðTÞ ¼

Z T

0

rcpðTÞ dT þ glrL ð17Þ

where gl is the volumetric fraction of liquid ð0 # gl # 1; gl ¼ 0 in the solid, gl ¼ 1 in
the liquid), assumed to be a given function of the temperature, and L the specific latent
heat of solidification. From the enthalpy function, we can derive an effective heat
capacity rceff , which accounts for phase change effects. Assuming that gl is a function
of the temperature only, for the sake of simplicity, it is defined as:

rceff ¼
›H

›T
¼ rcp þ rL

dgl

dT
ð18Þ

subject to the initial condition (3) and the boundary conditions (4)-(6). In general,
equation (18) is only valid in a weak sense, since the first term resembles the Dirac’s
delta function for eutectic or isothermal transformations. The direct evaluation of rceff
as done in the early solidification models (Bonacina et al., 1973) yields highly
inaccurate results in problems with a narrow solidification range unless in a huge
number of sampling points be placed in each element affected by phase change. For this
reason, rceff is usually regularized as proposed for instance by Lemmon (1979, 1981):
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rceff ¼
k7Hk

k7Tk
ð19Þ

where kð*Þk is the norm of vector ð*Þ, and spatial regularization is obtained by
assuming H interpolated in the same way as T. Formula (18) yields an element-wise
constant effective heat capacity for linear tetrahedral and triangular elements. Now the
discrete heat equation involving phase change can be written as:

Ceff
T2Tt

Dt
þKT2 F ¼ 0 ð20Þ

whose form is identical to that of the original equation, only requiring to replace rcp by
rceff in the definition of the heat capacitance matrix C, equation (7).

In consequence, the implementation of the diffusion-split method in this case is
essentially the same as described above, except for determining Dtts, which cannot in
general be estimated a priori. In the elements undergoing phase change, rceff is
considerably greater than rcp. Also, it is highly variable with time. In this case, Dtts
should be determined at each time step until thermal shocks effects completely
disappear. Actually, a general and efficient procedure to determine Dtts for non-linear
problems and unstructured meshes remains a research item.

5. Applications
5.1 Test case: one-dimensional cooling
Let us consider first the 1D case of a semi-infinite domain, initially at the uniform
temperature T 0 ¼ 8008C, whose surface temperature suddenly falls to a value
Tw ¼ 258C, kept constant. Table I lists the material properties. This problem illustrates
some typical features of thermal analysis in steel hot forming. We use a 3D structured
triangulation with uniform element size Dx ¼ 2mm in the flux direction. A constant
time step Dt ¼ 0:1 s is adopted.

In this case, the original Galerkin solution is affected by thermal shocks, as
evidenced by the spurious temperature increment of 13.28C at the first time step for a
node located 4mm-far from the cooled wall (Figure 1).

For linear tetrahedral finite elements and consistent (not-lumped) capacitance
matrix, the constant a in equation (1) is taken equal to unity (Jaouen, 1998), obtaining
then Dtts ¼ 0:748 s: However, using the procedure described in the preceding section,
every nodal point is already free of unphysical heating for Dtts ¼ 0:544 s: And, by
tolerating a small temperature overshoot of 0.18C for instance, this value reduces to
0.287 s. The augmented conductivity k * is computed using equation (15) for the first
time step, and decreases linearly with time until reach the original value k for t $ Dtts:
Let us remind that the closer the values of Dt and Dtts, the lesser the artificial increment
of the conductivity in the thermal regions when the diffusion-split method is used. This
is clearly evident in Figure 1 where the temperature rate at the first time step increases
as k* does, which is an unphysical but numerical effect of the diffusion-split method.

Density (r) 7,800 kg/m3

Heat capacity (cp) 360 J/(kg8C)
Thermal conductivity (k) 15 W/(m8C)

Table I.
Material properties for
the 1D cooling problem
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5.2 Ingot solidification
We consider now the ingot casting model shown in Figure 2. The material properties of
each component and other model parameters are listed in Table II. For the sake of
simplicity, the solid fraction is supposed be linear between the liquidus and solidus
temperature. The model is axisymmetric, and a small sector of 128 is considered for 3D
simulation. The ingot has a radius of 0.433m at the top, and its total height is 2.58m.
This is a typical simulation illustrating the problems posed by thermal shocks in
current 3D applications.

First, due to the very different diffusion properties of the different components, an
excessively large time step is needed in order to satisfy the penetration depth condition.
Taking into account the average element size (since the mesh density is quite uniform
in each subdomain), equation (1) yields the values of Dtts listed in Table II.

For Dt ¼ 0.1 s (an adequate value of the time increment for the early stages of the
simulation), the obtained solution using standard Galerkin FEM with P1 elements is
completely useless, exhibiting nodal temperatures that are 948C above the initial
temperature in the ingot. The solution is even worse in the domain of smallest
diffusivity: in the casting powder, this spurious overheating attains 3208C, while
negative temperatures are observed in the insulator.

In order to apply the diffusion-split solution, we choose to admit an overheating of
0.58C in the ingot at the first time step. In such a way, the value of Dtts falls to 11 s, and
considerably less artificial diffusion is added. A reference solution is obtained using the
above mentioned explicit Taylor DG (TDG) method with P0 triangular elements
(Pichelin and Coupez, 1999), probed to be free of instabilities caused by thermal shocks.

Figure 3 shows the temperature through a cross section of the ingot, situated 1.60m
far from the bottom, at the beginning of simulation (t ¼ 1.1 s). A good agreement
between diffusion-split and TDG solutions is observed. The points in the plot
correspond to the centre of the TDG elements, while they are nodal values for the 3D
triangulation, letting us note that the 2D TDG mesh is about 2.5-times denser than the
3D mesh in this region.

Figure 1.
One-dimensional academic

test for thermal shock.
Early evolution of the
temperature at a node

situated 4mm-far from the
chilled wall
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Once the solidification has progressed in the ingot, the agreement between both models
remains satisfactory, as shown in Figure 4 for the temperature field at time t ¼ 20min
and t ¼ 2 h. The slight differences can be attributed to the effects of nodal smoothing,
which is a necessary post-treatment in the case of TDG calculations, and to the
differences in mesh densities.

6. Conclusions
The diffusion-split method makes possible to solve problems involving thermal shocks
using the FEM with linear tetrahedral elements. Compared to the previous models
using P1 elements, the diffusion-split method works for general meshes, contrary to the
OSC-FEM method (Putti and Cordes, 1998; Cordes and Putti, 2001), and the heat
equation is solved for an adequate time step (i.e. not excessively large), contrary to the
so-called asynchronous analysis (Jaouen, 1998). Compared to the DG methods using P0
elements (Pichelin and Coupez, 1999; Batkam, 2002), the present model has not only a
better accuracy order, but also a smaller computational cost. The present model can be
implemented in most existing FEM codes with a minimal effort.

Figure 2.
Industrial application test.
FEM model of an ingot
casting process
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Ingot
Density (r) 7,450 kg/m3

Heat capacity (cp) 510 J/(kg8C)
Thermal conductivity (k) 30W/(m8C)
Latent heat (L) 241,000 J/kg
Solidus temperature 1,4328C
Liquidus temperature 1,4548C
Initial temperature 1,5348C
Time step (Dtts) 20.3 s

Mold
Density (r) 7,200 kg/m3

Heat capacity (cp) 600 J/(kg8C)
Thermal conductivity (k) 30W/(m8C)
Initial temperature 808C
Time step (Dtts) 36.3 s

Insulator
Density (r) 780 kg/m3

Heat capacity (cp) 848.5 J/(kg8C)
Thermal conductivity (k) 0.82W/(m8C)
Initial temperature 608C
Time step (Dtts) 41.3 s

Casting powder
Density (r) 500 kg/m3

Heat capacity (cp) 1,100 J/(kg8C)
Thermal conductivity (k) 0.35W/(m8C)
Initial temperature 1,5348C
Time step (Dtts) 70.3 s

Interfaces between materials
Heat exchange coefficient (h) 1,000W/(m28C)

Interfaces with air
Heat exchange coefficient (h) 30W/(m28C)
External temperature (Text) 208C

Table II.
Material properties and
simulation data for the

ingot solidification
problem

Figure 3.
Temperature in the ingot

at time 1.1 s in a cross
section located 1.6m-far
from the ingot bottom
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